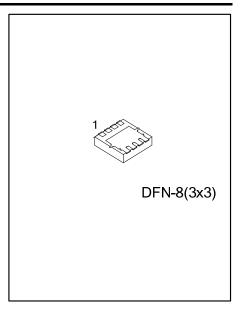


UTC UNISONIC TECHNOLOGIES CO., LTD

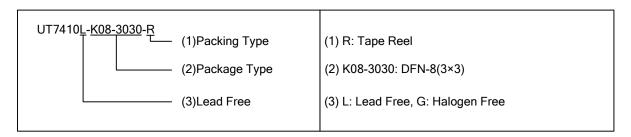
UT7410 Preliminary Power MOSFET

30V, 24A N-CHANNEL ENHANCEMENT MODE POWER MOSFET

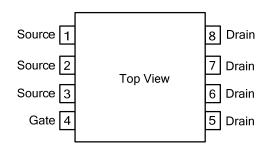

DESCRIPTION

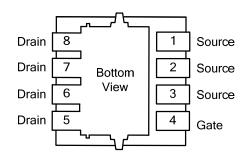
The UTC UT7410 is an N-channel enhancement MOSFET, it uses UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$ and low gate charge.

The UTC UT7410 is suitable for Load Switch and DC-DC converters applications, etc.


FEATURES

- * $R_{DS(ON)}$ <24m Ω @ V_{GS} =10V, I_D =8A $R_{DS(ON)}$ <32m Ω @ V_{GS} =4.5V, I_{D} =7A
- * Low Gate Charge (typical 9.8nC)


ORDERING INFORMATION


Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
UT7410L-K08-3030-R	UT7410G-K08-3030-R	DFN-8(3×3)	Tape Reel	

www.unisonic.com.tw 1 of 7

■ PIN CONFIGURATION

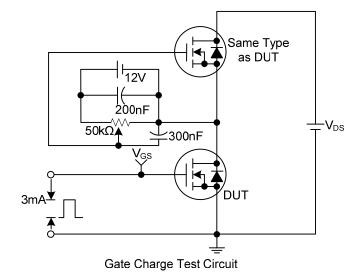
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

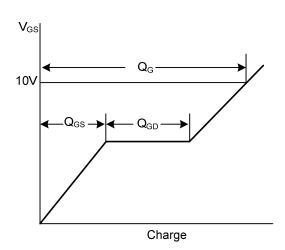
PARAMETER		SYMBOL	RATINGS	UNIT		
Drain-Source \	/oltage			V_{DSS}	30	V
Gate-Source V	oltage/			V_{GSS}	±20	V
		(Nata 2)	T _C =25°C		24	Α
	Continuous	(Note 2)	T _C =100°C	l _D	30 ±20	Α
Drain Current	Continuous	(Note 1)	T _A =25°C	I _{DSM}	9.5	Α
			T _A =70°C		7.7	Α
	Pulsed (Note	Pulsed (Note 3)			40	Α
	(Nata 2)	T _C =25°C		20	W	
Drain Current Power Dissipat Junction Temp	tion	(Note 2)	T _C =100°C	P_{D}	8.3	W
Power Dissipa	uon	(Note 1)	T _A =25°C	P _{DSM}	3.1	W
			T _A =70°C		2	W
Junction Temp	on Temperature T _J		TJ	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C		

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

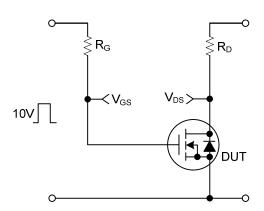
■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	
Junction to Ambient (Note 1)	t≤10s	θ_{JA}		30	40	°C/W
	Steady-State			60	75	°C/W
Junction to Case (Note 2)	Steady-State	θлс		5	6	°C/W

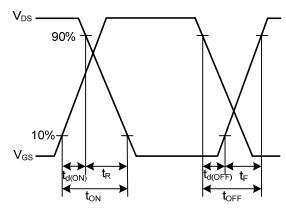

Notes: 1. The value of θ_{JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on θ_{JA} t≤10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.

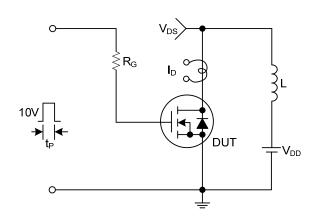

- 2. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise noted)

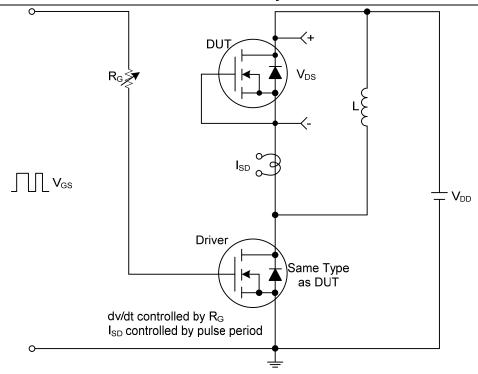

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	30			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μΑ
Cata Source Leakage Current Forward		V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.4	1.8	2.5	V
Static Drain-Source On-Resistance		V_{GS} =10V, I_D =8A		18	24	mΩ
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =7A		27	32	mΩ
Forward Transconductance	g FS	V_{DS} =5V, I_D =8A		30		S
On State Drain Current	I _{D(ON)}	V _{GS} =10V, V _{DS} =5V	40			Α
DYNAMIC PARAMETERS	_				-	
Input Capacitance	C _{ISS}			550		pF
Output Capacitance	Coss	V_{GS} =0V, V_{DS} =15V, f=1.0MHz		110		pF
Reverse Transfer Capacitance	C _{RSS}			55		pF
Gate resistance	R_G	V _{GS} =0V, V _{DS} =0V, f=1.0MHz		4	4.9	Ω
SWITCHING PARAMETERS					_	
Total Cata Charge	Q_{G}	V -40V V -45V L-9A		9.8		nC
Total Gate Charge 4.5V				4.6		nC
Gate to Source Charge	Q_{GS}	V_{GS} =10V, V_{DS} =15V, I_{D} =8A		1.8		nC
Gate to Drain Charge	Q_{GD}			2.2		nC
Turn-ON Delay Time	t _{D(ON)}			5		ns
Rise Time	t _R	V_{GS} =10V, V_{DS} =15V, R_L =2 Ω ,		3.2		ns
Turn-OFF Delay Time	t _{D(OFF)}	$R_{GEN}=3\Omega$		24		ns
Fall-Time	t _F]		6		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	RISTICS				
Maximum Body-Diode Continuous Current	Is				1.7	Α
Drain-Source Diode Forward Voltage	V _{SD}	I _S =1A, V _{GS} =0V		0.75	1	V

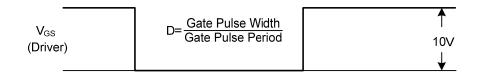
■ TEST CIRCUITS AND WAVEFORMS

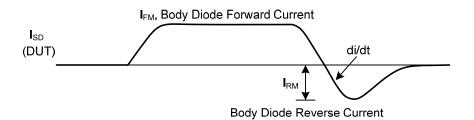


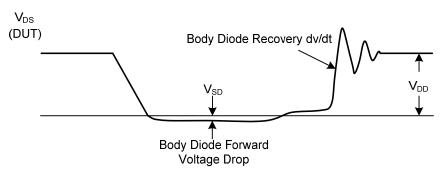

Gate Charge Waveforms

Resistive Switching Test Circuit


Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit



Unclamped Inductive Switching Waveforms

Peak Diode Recovery dv/dt Test Circuit and Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

Power MOSFET